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axisymmetric vacuum:
nothing much...

∇×B = 0

∇× E = 0

∇ ·B = 0
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axisymmetric vacuum:
nothing much...

∇×B = 0

∇× E = 0

∇ ·B = 0

Spinning aligned dipole
Quadrupole electrostatic field
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Dome & torus, electrospheres (Michel, Shibata, Spitkovsky, Petri)
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Dome & torus, electrospheres (Michel, Shibata, Spitkovsky, Petri)

Diocotron instability
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The aligned rotator (Scharleman & Wagoner 1973)

axisymmetric force-free ideal relativistic MHD:
the pulsar equation

∇ ·B = 0

E ·B = 0

∇×B = (4π/c)J

∇× E = 0

ρeE + J ×B = 0
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The aligned rotator (Scharleman & Wagoner 1973)

axisymmetric force-free ideal relativistic MHD:
the pulsar equation
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The aligned rotator (Contopoulos, Kazanas & Fendt 1999; Contopoulos 2005)

axisymmetric force-free ideal relativistic MHD:
the pulsar equationI. Contopoulos: The coughing pulsar magnetosphere 583
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Fig. 5. Summary of our numerical solutions applied in the case of
SGR 1806-20. We show here ψopen (continuous line), the acceler-
ating potential Vacc/(1012 statvolt) (dashed line), and the spindown
rate |ν̇|/10−11 Hz s−1 (short dashed line). On the plot are shown our
estimates for the magnetospheric configuration before and after the
December 27, 2004 burst.

the azimuthal component of the magnetic field Bφ and in the
electric field E, namely
∫

(B2
φ + E2)r2dr ∼

∫ (
ΩFrBp

c

)2
r2dr

∼ Ω2
FoB2

∗r
3
∗

(
r∗
rlc

)3 ( r
rlc

)
· (24)

Here, the integration distance r extends to distances$rlc. Any
evolution between the different solutions will require the re-
lease (or buildup) of the corresponding energy difference (see
discussion in the next section).

We discovered that, as ΩFo varies from Ω to 0, the open
field region decreases to a minimum value of about ψopen ∼ 1.2
(see Fig. 5). In the next section we will see that this numerical
result might have interesting physical implications in under-
standing the SGR phenomenon.

Figure 6 shows the corresponding rescaled electric cur-
rent distribution A/(ψopenΩFo), and the rescaled distribu-
tion AA′/(ψopenΩ

2
Fo), (obtained numerically) as functions of

the normalized magnetic flux ψ/ψopen. We see that indeed the
electric current distributions are very similar and proportional
to ΩFo. Let us now see how this result affects our estimation
of stellar magnetic fields B∗. As we mentioned in the introduc-
tion, it is customary to estimate B∗ by equating the observed
stellar spindown energy loss to the estimated electromagnetic
spindown torque. As we show in the Appendix,

Lem spindown = Ω

∫ ψopen

ψ=0
A(ψ)dψ ≈ 2

3
ΩFoψ

2
open

≈ B2
∗Ω

3ΩFor6
∗

4c3

(
rlc

rc

)2
(25)

(in real units). In general, rc introduces one more free param-
eter in the problem (see Sect. 5). Let us here consider only
the natural case rc ∼ rlc and discuss the physical significance
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Fig. 6. The rescaled electric current distribution A/(ψopenΩFo) and the
rescaled distribution AA′/(ψopenΩ

2
Fo), as functions of the rescaled mag-

netic flux ψ/ψopen in the open line region, for ΩFo = 1, 0.8 and 0.6
(from the lower curves up respectively). The upper curves (dotted) are
the ones that correspond to the Michel split monopole expression.

of ΩFo. Equation (25) implies that stellar magnetic field es-
timates need to be revised upwards over the canonical value
obtained when one compares Eqs. (1) and (2). Note that when
ΩFo = 0, ρe = 0, J = 0, i.e. no currents flow through the
magnetosphere, and therefore the star will not spin down. In
most cases, ΩFo ∼ [80, 95]%Ω (Romani, personal communi-
cation), and therefore, the correction introduced in the stellar
magnetic field estimate is in most cases practically insignifi-
cant. The correction is significant and should be taken into se-
rious consideration for slow pulsars near the pulsar death-line,
where V∗(ψopen) ≈ 1012 Volts = V(ψopen) and VF(ψopen) ≈ 0
(Eq. (13)).

4. A “coughing” magnetosphere

The solutions presented in the previous section are all steady-
state solutions characterized by one parameter, ΩFo, which, as
we argued, is determined by the particle acceleration gap mi-
crophysics. Let us imagine first that charge carriers are freely
available at the base of the magnetosphere. In that case, the gap
is shorted out, and the magnetosphere is described by a steady-
state solution withΩFo ≈ Ω (CKF). Let us imagine next that the
supply of charge carriers is somehow suddenly depleted. The
gap will suddenly grow, and the magnetosphere will quickly
evolve towards a different steady-state solution with ΩFo ! Ω.
We are now going to discuss how, in our opinion, the magne-
tosphere may evolve from the one steady-state solution to the
other. We will base our discussion on the particular example of
SGR 1806-20, and its December 27, 2004 burst.

We will argue that, when the particle acceleration gap at the
base of the magnetosphere suddenly grows, the magnetosphere
will spontaneously evolve from a configuration with a larger
open field line region and a larger poloidal electric current, to
one with a smaller open field line region and a smaller poloidal
electric current. One way to achieve this might be through
north-south reconnection at the distance of the light cylinder.
We expect a significant amount of magnetic flux (∼5% ψopen)
to “snap” and move equatorially outward similarly to a solar
coronal mass ejection (plasmoid). At the same time, the mag-
netosphere will release the excess energy contained in the
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The aligned rotator (Contopoulos, Kazanas & Fendt 1999)
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The aligned rotator (Contopoulos, Kazanas & Fendt 1999)

ρGJ = 0
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The aligned rotator (Contopoulos, Kazanas & Fendt 1999)

ρGJ = 0

JCKF = 0
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The Y-point singularity (Uzdensky 2003; Kalapotharakos & Contopoulos 2009)

Bφ(z = 0)

axisymmetric force-free ideal relativistic MHD:
the Y-point
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The equatorial current sheet (Contopoulos 2009)
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axisymmetric force-free ideal relativistic MHD:
the Y-point
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Retarded dipole (Deutsch 1955)

3D vacuum:
Electrodynamics

Ė = c∇×B

Ḃ = −c∇× E

Spinning inclined dipole
Radiating antenna
Analytic solution (retarded dipole)

∇ ·B = 0
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FFE (Osherovich & Gliner 1988; Gruzinov 1999; Blandford 2002)

3D force-free ideal relativistic MHD:
Force-Free Electrodynamics (FFE)

∇ ·B = 0

E ·B = 0

ρeE + J ×B = 0

Ė = c∇×B − 4πJ

Ḃ = −c∇× E

J = ρec
E ×B

B2
+

1

4π

(B ·∇×B − E ·∇× E)

B2
B
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FFE code (Spitkovsky 2006; Kalapotharakos & Contopoulos 2009)

3D force-free ideal relativistic MHD:
numerical simulations

Staggered cartesian mesh (Yee 1966)
We “force” 
3rd order Runge-Kutta:
      synchronous E, B (more accurate)
Courant stability condition
Tests of the code:
      vacuum
      aligned rotator
      spindown

E ⊥ B, E ≤ B
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Perfectly Matched Layer (PML):
      absorbing non-reflecting outer boundary
      many rotations (instead of 1.5)
      L=2 RLC, δ=0.04 RLC

      1 CPU, 4 Gb
   24 hours

Parallel code (MPI):
       L=20 RLC, δ=0.02 RLC                              

1000 CPUs
less than one day ...                             Spherical star in cartesian grid...

FFE code (Kalapotharakos & Contopoulos 2009)

3D force-free ideal relativistic MHD:
numerical simulations
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The axisymmetric pulsar magnetosphere (Contopoulos & Kalapotharakos 2010)

J ρ, B

Thursday, November 3, 2011



The 3D pulsar magnetosphere: 30o (Contopoulos & Kalapotharakos 2010)

J ρ, B
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The 3D pulsar magnetosphere: 60o (Contopoulos & Kalapotharakos 2010)

J ρ, B
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The 3D pulsar magnetosphere: 90o (Contopoulos & Kalapotharakos 2010)
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The extended magnetosphere (Kalapotharakos, Contopoulos & Kazanas 2011)

3D force-free ideal relativistic MHD:
extended numerical simulations

Radiation caustics? 
(Ardavan 1998)
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The extended magnetosphere (Bogovalov 1999; Kalapotharakos, IC & Kazanas 2011)
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The extended magnetosphere (Bogovalov 1999; Kalapotharakos, IC & Kazanas 2011)
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The extended magnetosphere (Bogovalov 1999; Kalapotharakos, IC & Kazanas 2011)
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Curvature radiation along equatorial current sheet (Kalapotharakos & Contopoulos 2010)

3D force-free ideal relativistic MHD:
high-energy light curves

Pulses are narrow, emission regions 
have significant azimuthal extent

LCR ∝ nγ4

R2
c

Jeq ≈ ρec = nec
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Curvature radiation along equatorial current sheet (Kalapotharakos & Contopoulos 2010)

Narrower pulses from higher latitudes

Interpulse decreases fast as observer 
moves away from equatorial plane

Pulse-interpulse: 0.4-0.5P

Polarization angle sweep
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High energy light curves (Kalapotharakos & Contopoulos 2010)

3D force-free ideal relativistic MHD:
high-energy light curves

Higher radio lags 

Thursday, November 3, 2011



“Lighting up” field lines (Romani et al. 2009; Bai & Spitkovsky 2010; Harding et al. 2011)

3D force-free ideal relativistic MHD:
high-energy light curves

0o 30o 60o 90o

Thursday, November 3, 2011



“Lighting up” field lines (Harding, DeCesar, Miller, Kalapotharakos & IC 2011)

3D force-free ideal relativistic MHD:
high-energy light curves
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3D force-free ideal relativistic MHD:
high-energy light curves

Higher radio lags
(vacuum works better)...

“Lighting up” field lines (Harding, DeCesar, Miller, Kalapotharakos & IC 2011)
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Li, Spitkovsky & Tchekhovskoy 2011; Kalapotharakos, Kazanas, Harding & IC 2011

3D resistive relativistic MHD:
towards the real pulsar magnetosphere

No microphysics in FFE:
       no particle production
       no particle acceleration 
       space-like: J>ρec  
       time-like  : J<ρec 

Physical resistivity needed
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Kalapotharakos, Kazanas, Harding & Contopoulos 2011

3D resistive relativistic MHD:
towards the real pulsar magnetosphere

Strong Field Electrodynamics (SFE; Gruzinov 2008):

Lorentz covariant
σ=0: J=ρe c (not vacuum!)
space-like everywhere (oscillatory where FFE time-like)

J = ρec
E ×B

B2 + E2
o

+
1

4π

�
ρ2e + σ2γ2E2

o(BoB + EoE)

B2 + E2
o

B
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Other resistivity prescriptions:

      non-covariant σ
      require  J=ρec
      combination of SFE + FFE (space-like + time-like)
Intermediate between vacuum and FFE

Li, Spitkovsky & Tchekhovskoy 2011; Kalapotharakos, Kazanas, Harding & IC 2011

3D resistive relativistic MHD:
towards the real pulsar magnetosphere

J = ρec
E ×B

B2 + E2
o

+ σE�
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Li, Spitkovsky & Tchekhovskoy 2011; Kalapotharakos, Kazanas, Harding & IC 2011

3D resistive relativistic MHD:
towards the real pulsar magnetosphere6
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Fig. 2.— Spin-down luminosity dependence on inclination angle
for force-free, a sequence of resistive, and vacuum dipoles. Spin-
down is normalized by 3/2 times the spin-down power of the or-
thogonal vacuum rotator. We see a smooth monotonic transition
from force-free to vacuum with decreasing conductivity.

down curves have been normalized to L0, defined as

3/2 times the power of the orthogonal vacuum rotator

with finite R∗ = 3/8RLC . Two-dimensional axisymmet-

ric calculations for small star tell us that the spin-down of

the aligned force-free rotator should be 3/2 times larger

than the power of the orthogonal point vacuum dipole,

L1 = 2µ2Ω4/3c3 (Contopoulos et al. 1999; Gruzinov

2005; McKinney 2006; S06). The short dashed line shows

the function L/L0 = 1 + sin
2 α, the expected force-free

curve in the limit of small star with inclined dipole (S06).

The gray band around the force-free curve indicates the

uncertainty in the measurement due to boundary effects
and numerical dissipation of Poynting flux in the magne-

tosphere (see Appendix B for thorough discussion). Sim-

ilar bands are implied but not shown for resistive spin-

down curves. The long dashed line shows the analytic

vacuum Deutsch field solution (Michel & Li 1999). One

of our principal results is that we see a smooth mono-

tonic transition from the force-free spin-down curve to

the vacuum spin-down curve for decreasing conductivity.

All spin-down curves in Fig. 2 show a strong depen-

dence on both inclination angle and conductivity. The

radial Poynting flux carrying the spin-down power is pro-

portional to the product of poloidal and toroidal mag-

netic fields (EθBφ ∼ ΩRBpBφ/c), both of which are af-

fected by the strength of displacement and conduction

currents in the magnetosphere. One can get a qualitative

feel for the relative significance of two contributions by

considering the limiting cases. In vacuum, the increase of

spin-down with inclination is solely due to rising displace-

ment current. This current is likely responsible for much

of the angular dependence of the resistive and force-free

solutions. The increase in spin-down with increasing con-

ductivity is due to the additional sweep-back and opening

of the poloidal field brought on by the increasing conduc-

tion current. We find that solutions at any conductivity

have an angular dependence of sin
2 α. We parameterize

the spin-down curves in Fig. 2 with functions f(σ/Ω) and
g(σ/Ω) such that L/L0 = f(σ/Ω) + g(σ/Ω) sin2 α. We

find the piecewise linear fit

L

L0
= 0.3 + 0.3 log(σ/Ω)2 + 1.2 sin2 α , (σ/Ω)2 > 0.4;

L

L0
= 0.2 + 0.08 log(σ/Ω)2 + (1.3 + 0.2 log(σ/Ω)2) sin2 α,

0.004 < (σ/Ω)2 < 0.4. (8)

The amplitude of the angular dependence, g(σ/Ω), is

constant for (σ/Ω)2 > 0.4 and begins to transition to

the vacuum value below (σ/Ω)2 = 0.4.
We have thus far shown how spin-down luminosity de-

pends on plasma conductivity, but the physical meaning

of the conductivity is not entirely clear. It is instructive

to reinterpret the conductivity parameter, σ/Ω, in terms

of the potential drop along open field lines in the coro-

tating frame. This gives us a handle on the deviation

of the magnetosphere from ideal force-free, which has

vanishing potential drops along field lines. The electro-

magnetic fields in the frame corotating with the pulsar

are obtained via a coordinate transformation from the

laboratory frame (Schiff 1939; Grøn 1984):

�E� = �E +

�Ω× �r

c
× �B (9)

and
�B� = �B. (10)

Since the fields are steady in the corotating frame, ∇×
�E� = 0 and the corotating electric field can be written as

the gradient of a scalar potential, i.e., �E� = ∇χ. Taking
the line integral of the corotating electric field along a

magnetic field line, l, we find

∆χ =

�

l

�E� · �dl =
�

l

�E · �dl ≡ Vdrop. (11)

We see that the potential drop along field lines in the

corotating frame can be computed directly from the lab-

oratory frame fields. Although in resistive solutions par-

ticles will actually drift across magnetic field lines, in

addition to accelerating along them, we choose to study

the field-aligned potential drop Vdrop as a fiducial mea-

sure of particle energy gain.

Consider field lines starting on the stellar surface in

the �µ − �Ω plane separated by 15◦ in latitude from pole

to equator. For every such field line we integrate the

electric field to find the maximum potential drop along

each field line. We then determine the field line with

the largest overall potential drop for a given magnetic

inclination. Integrating field lines separated by 15◦ in-

crements on the stellar surface is sufficient to give a good

estimate of the maximum potential drop along field lines.

Fig. 3 shows the maximal potential drop as a function of

dipole inclination angle for different conductivities. All

results have been normalized to the potential drop from

the pole to the equator of an aligned vacuum rotator in

the laboratory frame, V0 = |�µ|/(RLCR∗). As our models

do not prescribe a high conductivity to the closed field

line region, the available accelerating potential is limited

by the pole-to-equator potential difference, rather than

Fig. 2.— (a) The Poynting fluxes L (measured
on the surface of the star) as a function of σ
in log-linear scale for prescription (B). Red and
blue colors correspond to the aligned and the per-
pendicular rotator, respectively. The horizontal
solid line elements denote the L values correspond-
ing to the vacuum (lower value) and the IMHD
(higher value) solutions. Note that the L value for
a = 0◦ is similar to the vacuum one for σ ! 0.3Ω
(Ω is the angular frequency of the star) and it
reaches that of the IMHD solution only for much
higher σ values; (b) The dissipation energy rate
ĖD integrated over the volume bounded by radii
r1 = r! = 0.3RLC and r2 = 2.5RLC as a func-
tion of σ; (c) The fraction ĖD/L never exceeds
the values 10%-20%, while for σ → 0 and σ → ∞
it goes towards 0. The dashed horizontal lines in
all three panels denote the values corresponding
to simulations with J/ρc = 1 (see §4, 5).
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Non-ideal magnetospheres 60o (Li, Spitkovsky & Tchekhovskoy 2011)

Resistive Pulsar Magnetospheres 5
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Fig. 1.— Magnetic field lines in the �µ − �Ω plane for a 60◦ inclined dipole. Color represents out-of-plane magnetic field into (red) and
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Fig. 2.— Spin-down luminosity dependence on inclination angle
for force-free, a sequence of resistive, and vacuum dipoles. Spin-
down is normalized by 3/2 times the spin-down power of the or-
thogonal vacuum rotator. We see a smooth monotonic transition
from force-free to vacuum with decreasing conductivity.

down curves have been normalized to L0, defined as

3/2 times the power of the orthogonal vacuum rotator

with finite R∗ = 3/8RLC . Two-dimensional axisymmet-

ric calculations for small star tell us that the spin-down of

the aligned force-free rotator should be 3/2 times larger

than the power of the orthogonal point vacuum dipole,

L1 = 2µ2Ω4/3c3 (Contopoulos et al. 1999; Gruzinov

2005; McKinney 2006; S06). The short dashed line shows

the function L/L0 = 1 + sin
2 α, the expected force-free

curve in the limit of small star with inclined dipole (S06).

The gray band around the force-free curve indicates the

uncertainty in the measurement due to boundary effects
and numerical dissipation of Poynting flux in the magne-

tosphere (see Appendix B for thorough discussion). Sim-

ilar bands are implied but not shown for resistive spin-

down curves. The long dashed line shows the analytic

vacuum Deutsch field solution (Michel & Li 1999). One

of our principal results is that we see a smooth mono-

tonic transition from the force-free spin-down curve to

the vacuum spin-down curve for decreasing conductivity.

All spin-down curves in Fig. 2 show a strong depen-

dence on both inclination angle and conductivity. The

radial Poynting flux carrying the spin-down power is pro-

portional to the product of poloidal and toroidal mag-

netic fields (EθBφ ∼ ΩRBpBφ/c), both of which are af-

fected by the strength of displacement and conduction

currents in the magnetosphere. One can get a qualitative

feel for the relative significance of two contributions by

considering the limiting cases. In vacuum, the increase of

spin-down with inclination is solely due to rising displace-

ment current. This current is likely responsible for much

of the angular dependence of the resistive and force-free

solutions. The increase in spin-down with increasing con-

ductivity is due to the additional sweep-back and opening

of the poloidal field brought on by the increasing conduc-

tion current. We find that solutions at any conductivity

have an angular dependence of sin
2 α. We parameterize

the spin-down curves in Fig. 2 with functions f(σ/Ω) and
g(σ/Ω) such that L/L0 = f(σ/Ω) + g(σ/Ω) sin2 α. We

find the piecewise linear fit

L

L0
= 0.3 + 0.3 log(σ/Ω)2 + 1.2 sin2 α , (σ/Ω)2 > 0.4;

L

L0
= 0.2 + 0.08 log(σ/Ω)2 + (1.3 + 0.2 log(σ/Ω)2) sin2 α,

0.004 < (σ/Ω)2 < 0.4. (8)

The amplitude of the angular dependence, g(σ/Ω), is

constant for (σ/Ω)2 > 0.4 and begins to transition to

the vacuum value below (σ/Ω)2 = 0.4.
We have thus far shown how spin-down luminosity de-

pends on plasma conductivity, but the physical meaning

of the conductivity is not entirely clear. It is instructive

to reinterpret the conductivity parameter, σ/Ω, in terms

of the potential drop along open field lines in the coro-

tating frame. This gives us a handle on the deviation

of the magnetosphere from ideal force-free, which has

vanishing potential drops along field lines. The electro-

magnetic fields in the frame corotating with the pulsar

are obtained via a coordinate transformation from the

laboratory frame (Schiff 1939; Grøn 1984):

�E� = �E +

�Ω× �r

c
× �B (9)

and
�B� = �B. (10)

Since the fields are steady in the corotating frame, ∇×
�E� = 0 and the corotating electric field can be written as

the gradient of a scalar potential, i.e., �E� = ∇χ. Taking
the line integral of the corotating electric field along a

magnetic field line, l, we find

∆χ =

�

l

�E� · �dl =
�

l

�E · �dl ≡ Vdrop. (11)

We see that the potential drop along field lines in the

corotating frame can be computed directly from the lab-

oratory frame fields. Although in resistive solutions par-

ticles will actually drift across magnetic field lines, in

addition to accelerating along them, we choose to study

the field-aligned potential drop Vdrop as a fiducial mea-

sure of particle energy gain.

Consider field lines starting on the stellar surface in

the �µ − �Ω plane separated by 15◦ in latitude from pole

to equator. For every such field line we integrate the

electric field to find the maximum potential drop along

each field line. We then determine the field line with

the largest overall potential drop for a given magnetic

inclination. Integrating field lines separated by 15◦ in-

crements on the stellar surface is sufficient to give a good

estimate of the maximum potential drop along field lines.

Fig. 3 shows the maximal potential drop as a function of

dipole inclination angle for different conductivities. All

results have been normalized to the potential drop from

the pole to the equator of an aligned vacuum rotator in

the laboratory frame, V0 = |�µ|/(RLCR∗). As our models

do not prescribe a high conductivity to the closed field

line region, the available accelerating potential is limited

by the pole-to-equator potential difference, rather than

Fig. 2.— (a) The Poynting fluxes L (measured
on the surface of the star) as a function of σ
in log-linear scale for prescription (B). Red and
blue colors correspond to the aligned and the per-
pendicular rotator, respectively. The horizontal
solid line elements denote the L values correspond-
ing to the vacuum (lower value) and the IMHD
(higher value) solutions. Note that the L value for
a = 0◦ is similar to the vacuum one for σ ! 0.3Ω
(Ω is the angular frequency of the star) and it
reaches that of the IMHD solution only for much
higher σ values; (b) The dissipation energy rate
ĖD integrated over the volume bounded by radii
r1 = r! = 0.3RLC and r2 = 2.5RLC as a func-
tion of σ; (c) The fraction ĖD/L never exceeds
the values 10%-20%, while for σ → 0 and σ → ∞
it goes towards 0. The dashed horizontal lines in
all three panels denote the values corresponding
to simulations with J/ρc = 1 (see §4, 5).
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Fig. 2.— Spin-down luminosity dependence on inclination angle
for force-free, a sequence of resistive, and vacuum dipoles. Spin-
down is normalized by 3/2 times the spin-down power of the or-
thogonal vacuum rotator. We see a smooth monotonic transition
from force-free to vacuum with decreasing conductivity.

down curves have been normalized to L0, defined as

3/2 times the power of the orthogonal vacuum rotator

with finite R∗ = 3/8RLC . Two-dimensional axisymmet-

ric calculations for small star tell us that the spin-down of

the aligned force-free rotator should be 3/2 times larger

than the power of the orthogonal point vacuum dipole,

L1 = 2µ2Ω4/3c3 (Contopoulos et al. 1999; Gruzinov

2005; McKinney 2006; S06). The short dashed line shows

the function L/L0 = 1 + sin
2 α, the expected force-free

curve in the limit of small star with inclined dipole (S06).

The gray band around the force-free curve indicates the

uncertainty in the measurement due to boundary effects
and numerical dissipation of Poynting flux in the magne-

tosphere (see Appendix B for thorough discussion). Sim-

ilar bands are implied but not shown for resistive spin-

down curves. The long dashed line shows the analytic

vacuum Deutsch field solution (Michel & Li 1999). One

of our principal results is that we see a smooth mono-

tonic transition from the force-free spin-down curve to

the vacuum spin-down curve for decreasing conductivity.

All spin-down curves in Fig. 2 show a strong depen-

dence on both inclination angle and conductivity. The

radial Poynting flux carrying the spin-down power is pro-

portional to the product of poloidal and toroidal mag-

netic fields (EθBφ ∼ ΩRBpBφ/c), both of which are af-

fected by the strength of displacement and conduction

currents in the magnetosphere. One can get a qualitative

feel for the relative significance of two contributions by

considering the limiting cases. In vacuum, the increase of

spin-down with inclination is solely due to rising displace-

ment current. This current is likely responsible for much

of the angular dependence of the resistive and force-free

solutions. The increase in spin-down with increasing con-

ductivity is due to the additional sweep-back and opening

of the poloidal field brought on by the increasing conduc-

tion current. We find that solutions at any conductivity

have an angular dependence of sin
2 α. We parameterize

the spin-down curves in Fig. 2 with functions f(σ/Ω) and
g(σ/Ω) such that L/L0 = f(σ/Ω) + g(σ/Ω) sin2 α. We

find the piecewise linear fit

L

L0
= 0.3 + 0.3 log(σ/Ω)2 + 1.2 sin2 α , (σ/Ω)2 > 0.4;

L

L0
= 0.2 + 0.08 log(σ/Ω)2 + (1.3 + 0.2 log(σ/Ω)2) sin2 α,

0.004 < (σ/Ω)2 < 0.4. (8)

The amplitude of the angular dependence, g(σ/Ω), is

constant for (σ/Ω)2 > 0.4 and begins to transition to

the vacuum value below (σ/Ω)2 = 0.4.
We have thus far shown how spin-down luminosity de-

pends on plasma conductivity, but the physical meaning

of the conductivity is not entirely clear. It is instructive

to reinterpret the conductivity parameter, σ/Ω, in terms

of the potential drop along open field lines in the coro-

tating frame. This gives us a handle on the deviation

of the magnetosphere from ideal force-free, which has

vanishing potential drops along field lines. The electro-

magnetic fields in the frame corotating with the pulsar

are obtained via a coordinate transformation from the

laboratory frame (Schiff 1939; Grøn 1984):

�E� = �E +

�Ω× �r

c
× �B (9)

and
�B� = �B. (10)

Since the fields are steady in the corotating frame, ∇×
�E� = 0 and the corotating electric field can be written as

the gradient of a scalar potential, i.e., �E� = ∇χ. Taking
the line integral of the corotating electric field along a

magnetic field line, l, we find

∆χ =

�

l

�E� · �dl =
�

l

�E · �dl ≡ Vdrop. (11)

We see that the potential drop along field lines in the

corotating frame can be computed directly from the lab-

oratory frame fields. Although in resistive solutions par-

ticles will actually drift across magnetic field lines, in

addition to accelerating along them, we choose to study

the field-aligned potential drop Vdrop as a fiducial mea-

sure of particle energy gain.

Consider field lines starting on the stellar surface in

the �µ − �Ω plane separated by 15◦ in latitude from pole

to equator. For every such field line we integrate the

electric field to find the maximum potential drop along

each field line. We then determine the field line with

the largest overall potential drop for a given magnetic

inclination. Integrating field lines separated by 15◦ in-

crements on the stellar surface is sufficient to give a good

estimate of the maximum potential drop along field lines.

Fig. 3 shows the maximal potential drop as a function of

dipole inclination angle for different conductivities. All

results have been normalized to the potential drop from

the pole to the equator of an aligned vacuum rotator in

the laboratory frame, V0 = |�µ|/(RLCR∗). As our models

do not prescribe a high conductivity to the closed field

line region, the available accelerating potential is limited

by the pole-to-equator potential difference, rather than
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reaches that of the IMHD solution only for much
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ĖD integrated over the volume bounded by radii
r1 = r! = 0.3RLC and r2 = 2.5RLC as a func-
tion of σ; (c) The fraction ĖD/L never exceeds
the values 10%-20%, while for σ → 0 and σ → ∞
it goes towards 0. The dashed horizontal lines in
all three panels denote the values corresponding
to simulations with J/ρc = 1 (see §4, 5).
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Fig. 2.— Spin-down luminosity dependence on inclination angle
for force-free, a sequence of resistive, and vacuum dipoles. Spin-
down is normalized by 3/2 times the spin-down power of the or-
thogonal vacuum rotator. We see a smooth monotonic transition
from force-free to vacuum with decreasing conductivity.

down curves have been normalized to L0, defined as

3/2 times the power of the orthogonal vacuum rotator

with finite R∗ = 3/8RLC . Two-dimensional axisymmet-

ric calculations for small star tell us that the spin-down of

the aligned force-free rotator should be 3/2 times larger

than the power of the orthogonal point vacuum dipole,

L1 = 2µ2Ω4/3c3 (Contopoulos et al. 1999; Gruzinov

2005; McKinney 2006; S06). The short dashed line shows

the function L/L0 = 1 + sin
2 α, the expected force-free

curve in the limit of small star with inclined dipole (S06).

The gray band around the force-free curve indicates the

uncertainty in the measurement due to boundary effects
and numerical dissipation of Poynting flux in the magne-

tosphere (see Appendix B for thorough discussion). Sim-

ilar bands are implied but not shown for resistive spin-

down curves. The long dashed line shows the analytic

vacuum Deutsch field solution (Michel & Li 1999). One

of our principal results is that we see a smooth mono-

tonic transition from the force-free spin-down curve to

the vacuum spin-down curve for decreasing conductivity.

All spin-down curves in Fig. 2 show a strong depen-

dence on both inclination angle and conductivity. The

radial Poynting flux carrying the spin-down power is pro-

portional to the product of poloidal and toroidal mag-

netic fields (EθBφ ∼ ΩRBpBφ/c), both of which are af-

fected by the strength of displacement and conduction

currents in the magnetosphere. One can get a qualitative

feel for the relative significance of two contributions by

considering the limiting cases. In vacuum, the increase of

spin-down with inclination is solely due to rising displace-

ment current. This current is likely responsible for much

of the angular dependence of the resistive and force-free

solutions. The increase in spin-down with increasing con-

ductivity is due to the additional sweep-back and opening

of the poloidal field brought on by the increasing conduc-

tion current. We find that solutions at any conductivity

have an angular dependence of sin
2 α. We parameterize

the spin-down curves in Fig. 2 with functions f(σ/Ω) and
g(σ/Ω) such that L/L0 = f(σ/Ω) + g(σ/Ω) sin2 α. We

find the piecewise linear fit

L

L0
= 0.3 + 0.3 log(σ/Ω)2 + 1.2 sin2 α , (σ/Ω)2 > 0.4;

L

L0
= 0.2 + 0.08 log(σ/Ω)2 + (1.3 + 0.2 log(σ/Ω)2) sin2 α,

0.004 < (σ/Ω)2 < 0.4. (8)

The amplitude of the angular dependence, g(σ/Ω), is

constant for (σ/Ω)2 > 0.4 and begins to transition to

the vacuum value below (σ/Ω)2 = 0.4.
We have thus far shown how spin-down luminosity de-

pends on plasma conductivity, but the physical meaning

of the conductivity is not entirely clear. It is instructive

to reinterpret the conductivity parameter, σ/Ω, in terms

of the potential drop along open field lines in the coro-

tating frame. This gives us a handle on the deviation

of the magnetosphere from ideal force-free, which has

vanishing potential drops along field lines. The electro-

magnetic fields in the frame corotating with the pulsar

are obtained via a coordinate transformation from the

laboratory frame (Schiff 1939; Grøn 1984):

�E� = �E +

�Ω× �r

c
× �B (9)

and
�B� = �B. (10)

Since the fields are steady in the corotating frame, ∇×
�E� = 0 and the corotating electric field can be written as

the gradient of a scalar potential, i.e., �E� = ∇χ. Taking
the line integral of the corotating electric field along a

magnetic field line, l, we find

∆χ =

�

l

�E� · �dl =
�

l

�E · �dl ≡ Vdrop. (11)

We see that the potential drop along field lines in the

corotating frame can be computed directly from the lab-

oratory frame fields. Although in resistive solutions par-

ticles will actually drift across magnetic field lines, in

addition to accelerating along them, we choose to study

the field-aligned potential drop Vdrop as a fiducial mea-

sure of particle energy gain.

Consider field lines starting on the stellar surface in

the �µ − �Ω plane separated by 15◦ in latitude from pole

to equator. For every such field line we integrate the

electric field to find the maximum potential drop along

each field line. We then determine the field line with

the largest overall potential drop for a given magnetic

inclination. Integrating field lines separated by 15◦ in-

crements on the stellar surface is sufficient to give a good

estimate of the maximum potential drop along field lines.

Fig. 3 shows the maximal potential drop as a function of

dipole inclination angle for different conductivities. All

results have been normalized to the potential drop from

the pole to the equator of an aligned vacuum rotator in

the laboratory frame, V0 = |�µ|/(RLCR∗). As our models

do not prescribe a high conductivity to the closed field

line region, the available accelerating potential is limited

by the pole-to-equator potential difference, rather than

Fig. 2.— (a) The Poynting fluxes L (measured
on the surface of the star) as a function of σ
in log-linear scale for prescription (B). Red and
blue colors correspond to the aligned and the per-
pendicular rotator, respectively. The horizontal
solid line elements denote the L values correspond-
ing to the vacuum (lower value) and the IMHD
(higher value) solutions. Note that the L value for
a = 0◦ is similar to the vacuum one for σ ! 0.3Ω
(Ω is the angular frequency of the star) and it
reaches that of the IMHD solution only for much
higher σ values; (b) The dissipation energy rate
ĖD integrated over the volume bounded by radii
r1 = r! = 0.3RLC and r2 = 2.5RLC as a func-
tion of σ; (c) The fraction ĖD/L never exceeds
the values 10%-20%, while for σ → 0 and σ → ∞
it goes towards 0. The dashed horizontal lines in
all three panels denote the values corresponding
to simulations with J/ρc = 1 (see §4, 5).
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Towards a realistic pulsar magnetosphere

Non-ideal MHD

Electrodynamics Vacuum

Ideal + force-free MHD E.B=0

J=ρec

B1931+24:        1.5     
J1832+0029:     1.7

on/off
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Towards a realistic pulsar magnetosphere

Non-ideal MHD

Electrodynamics Vacuum

Ideal + force-free MHD E.B=0

J=ρec

B1931+24:        1.5     
J1832+0029:     1.7

on/off

J1841-0500:      2.5     
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off
vacuum work better for radio lags
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Towards a realistic pulsar magnetosphere

Prospects for the future

Physics:

       Investigate resistivity prescriptions       
       Reconnection in current sheet
       Radiation from “live” magnetosphere (radio, γ-rays)
       Spectrum, polarization

Numerics:

       Adaptive Mesh Refinement
       Pseudo-spectral methods
       The ultimate simulation: PIC + MHD
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