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Goal 

 We investigate cosmological scenarios 
that can describe the observed 
Universe as a whole 

 Astrophysical cosmology has become a 
precision science with a huge amount 
of data. The advancing gravitational 
wave multi-messenger astronomy 
opens a new era 
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Talk Plan 

 1) Observational Cosmology: the Standard Model of Cosmology. 
                          

 2) Standard Model of Cosmology. Do we need new physics? 
 

 3) We can modify the Universe content, or/and the gravitational 
theory. 
 

 4) Use of various observational data (SnIa, CMB, BAO, H(z), LSS etc) 
in order to constrain the proposed theories. 
 

 5) GWs: basic properties and evolution. 
 

 6) Gravitational wave astronomy, and multi-messenger astronomy:   
a novel tool to test General Relativity and cosmological scenarios in 
great accuracy. 
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Observations 

 

 

 

 

 

 

 

 
 SDSS (Sloan Digital Sky Survey) 2004: ~ clusters ”above and below 

the galactic plane” up to 1 Gpc  
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Observations 

 As the scale we observe the Universe increases, it looks as homogeneous 
and isotropic.  
 

 Cosmological Principle: “axiom” (indirect result) 

      Ι) We know that earth is an isotropic observation point. 

      ΙΙ) An anisotropic system has up to one isotropic observation point. 

 

 Hence, either we lie in the only isotropic observation point in an 
anisotropic Universe, or all its points are isotropic observation points.  

 

 Thus, the Universe is homogeneous and isotropic (isotropic and 
inhomogeneous is not possible)  
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Observations 

  Hubble 1929: The Universe expands 
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Observations 
 Since the Universe expands it is reasonable that it originates from a “too tiny” 

and “too dense” “primordial atom” (Lemaitre 1927) 

 

 Alpher, Bethe, Gamow (1948): The Universe begun to expand from a very 
high-density and high-temperature state towards less dense and hot states. 
Hoyle named the theory “The Big Bang Theory“. 

 
 

 Prediction I: Nucleosynthesis has primordial origin, namely at first 3 minutes   

                        (~     Κ) (giving 25% Helium) and not in stars (1-4%) 

                     As observed. 
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Observations 
 Prediction II: The primordial Universe became full of high-energy photons 

                            

 

                            380.000 years after (~3000Κ) they decouple from electrons            

                            (Recombination era). Black body radiation (today ~2.7 Κ) 
 

 1965 Penzias και Wilson 
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Theoretical arguments 

 Big Bang Theory explained: Olbers paradox (1826) (why night sky is not 
bright), Ryle (1970) (Radio galaxies density increases with redshift), Element 
abundance, CMB, etc 

 
 Theoretical Problems: 

 

 I) Horizon problem: Why points at opposite directions have the same 
properties 

 II) Flatness problem: Why the universe is today almost spatially flat 

          ~0.001. It must have started with ~       ! 

 Monopole problem: They are not observed. 
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Inflation 
 Kazanas, Guth, Linde (1982): The Universe            after the Big Bang, through 

some mechanism went into an exponential expansion up to             increasing 
in size ~       times: Inflation.  

 

 Ι) The observable Universe is a tiny part of the total one, and originates from 
a small, causally connected region.  
 

 ΙΙ) Due to the huge expansion, the spatial curvature became almost zero.  
 

 ΙΙΙ) Due to the huge expansion  the monopoles spread in all regions, and thus 
our own, observable universe, has at most one. 
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Inflation 
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Dark Energy 

 The Supernovae type Ia (explosions of binaries with one being white dwarf) are 
“standard candles”, since their absolute magnitude M can be determined. 

 

 In 1998 οι Perlmutter, Schmidt, 

     Riess observed that 50 SnIa 

     had smaller apparent magnitude 

     than expected hence light  

     traveled more, and thus  

     the Universe today expands 

     faster than before! 
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Dark Energy 

 The accelerated expansion is verified by independent observations, Cosmic 
Microwave Background (CMB), Baryon Acoustic Oscillations (BAO), Large 
Scale Structure (LSS), etc    

 

 

 Around 70% of the total energy density of the Universe is this unknown  
dark energy (it does not interact electromagnetically).  

 

 Possible explanation: The cosmological constant Λ (Einstein’s “greatest 
blunder”). A term that produces the extra “repulsion”. 
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Dark Matter 

 Galaxy rotation curves: 

     

 

 

 

 

 Bullet cluster (collision of two galaxy clusters) 

 

 

 

       
 





 80% of matter is an 
“unknown” dark matter 
(it does not interact 
electromagnetically)! 

14 
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Dark Matter 
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Cosmic Microwave Background radiation                      

 Since 1989, COBE, WMAP και Planck satellites show that CMB has small 
fluctuations: 

 

 

 

 

 

 

 

       
 

 


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Cosmic Microwave Background radiation                      

 From the fluctuation spectrum we extract information: The first peak provides 
the spatial curvature (it results to flat universe), the second peak the baryon 
energy density parameter, the third peak the dark matter energy density 
parameter, etc.   
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Inflation can also explain CMB and seeds 
of LSS 

 Additional success: Inflation provides the necessary primordial fluctuations, 
which letter gave the Large Scale Structure of matter: 

18 
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Summary of Observations 

The Universe history: 
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Knowledge of Physics 

Knowledge of Physics: Standard Model  

E.N.Saridakis – SEMFE, NTUA, March 2016 

20 E.N.Saridakis –  UOA,  Dec. 2018 



Knowledge of Physics 

Knowledge of Physics: Standard Model + General Relativity 

E.N.Saridakis – SEMFE, NTUA, March 2016 
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Modified/new knowledge of physics 

    So can our knowledge of Physics describes all these? 
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Modified/new knowledge of physics 

    So can our knowledge of Physics describes all these? 

Most probably, no! 

We definitely need new physics for Inflation and Dark matter. Maybe for dark energy. 

23 E.N.Saridakis –  UOA,  Dec. 2018 



24 

Cosmology 

 A successful cosmological model must: 

1) Describe the evolution of the universe at the background level 

2) Describe the evolution of the universe at the perturbation level  
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Cosmology 

 A successful cosmological model must: 

1) Describe the evolution of the universe at the background level 

2) Describe the evolution of the universe at the perturbation level  

 

 ΛCDM paradigm seems to succeed in both, at post-inflationary eras 

     

  Open issues: 

     1) The cosmological-constant problem. Calculation of Λ gives a          

         number 120 orders of magnitude larger than observed.  

          Worst error in the history of physics, history of science, history 

     2) How to describe primordial universe (inflation) 

     3) Tensions with some data sets, e.g. H0 and fσ8 data  

 
E.N.Saridakis –  UOA,  Dec. 2018 



26 

Cosmology-background 

 Homogeneity and isotropy: 

 

 Background evolution (Friedmann equations) in flat space 

 

 

 

     (the effective DE sector can be either Λ or any possible modification) 

 

 One must obtain a H(z) and Ωm(z) and wDE(z) in agreement with 
observations (SNIa, BAO, CMB shift parameter, H(z) etc) 
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Cosmology-perturbations 

 Perturbation evolution:                                       where  

    where                 is the effective Newton’s constant, given by   

 

 

 under the scalar metric perturbation 

 

 Hence: 

 

     with                        the growth rate, with                          and 

 

 One can define the observable: 
 

     with                      the z-dependent rms fluctuations of the linear density field within spheres of     

     radius                        , and σ8 its value today. 
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 Add a scalar field φ  in the Universe content  

28 

Dark Energy-Inflation 
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General Relativity 

 Einstein 1915: General Relativity:  

 

 
 

   energy-momentum source of spacetime Curvature 
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Modified Gravity 

Non-minimal gravity-
matter coupling 

(Gen. Proca) 
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Inflation: scalar field 
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Inflation: scalar field 

 

 

 

 

 

 Slow-roll conditions: 
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Inflation: scalar field 
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Scalar-Tensor Theories 

 Most general 4D scalar-tensor theories having second-order field equations:      
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Horndeski Theories 

 Most general 4D scalar-tensor theories having second-order field equations:      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   [Nicolis,Rattazzi,Trincherini, PRD 79]  
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 Coincides with Generalized Galileon theories 
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Horndeski Cosmology (background) 

 Field Equations: 

 In flat FRW:  

   
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Horndeski Cosmology (perturbations) 

 Scalar perturbations: 
 

 No-ghost condition:  

 

 No Laplacian instabilities condition: 

 

     with 
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Inflation in Horndeski Theories 

   
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Inflation in Horndeski Theories 

   

 

 

 

 

 

 

 

 

 

 

 

 

 G-Inflation (Shift-symmetric):  
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Dark Energy in Horndeski Theories 

    

 

 

 Background evolution: Universe thermal history 
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Dark Energy in Horndeski Theories 

    

 

 

 Background evolution: Universe thermal history 

 

 

 

 

 
 Perturbations:                    

      with 
                        

 Clustering growth rate: 
 

       γ(z): Growth index.     

 

  

554332 ,1,),(,),( cGGcXGXcXK  

   [Ali,Gannouji,Sami PRD 82]  

),,,,( 543 GGGKGG effeff 

mmeffmm GH  42  

)(
ln

ln
a

ad

d
m

m 


   [Leon, Saridakis JCAP 1303]  

E.N.Saridakis –  UOA,  Dec. 2018 



42 

 

 

42 

Nonminimal Derivative Coupling – Dark Energy 

   
 

 

 In flat FRW: 
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Dark Matter –  Dark Energy Interaction 

 Theoretical argument: In principle, since the underlying 
theory and the microphysics of both dark energy and 
dark matter is unknown, possible mutual interactions 
cannot be excluded.  
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Dark Matter –  Dark Energy Interaction 

 Theoretical argument: In principle, since the underlying 
theory and the microphysics of both dark energy and 
dark matter is unknown, possible mutual interactions 
cannot be excluded.  

 

 Phenomenological argument: Alleviate the coincidence 
problem: Why are the DE and DM densities nearly equal 
today, although they scale independently through the 
expansion history 

 

 

  

   [Mimoso, Nunes, Pavon, PRD 73]     [Billyard, Coley, PRD 61]     [Chen, Gong, Saridakis JCAP 0904]  
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DM – DE Interaction 

   
 

 

 

 

 Assume that DE and DM are effectively described by perfect fluids. 
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DM – DE Interaction 

   
 

 

 

 

 Assume that DE and DM are effectively described by perfect fluids. 

 

 

 

 Equations give only the total conservation, namely 

 

 

 If we assume DM conservation, i.e                    then DE is also conserved:  
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DM – DE Interaction 

 However, it is not forbidden to assume DM – DE interaction by arbitrarily 
splitting as: 

 

 

 

    with      a phenomenological descriptor of the interaction (positive          

     corresponds to energy transfer from DE to DM and vice versa).  
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DM – DE Interaction 

 However, it is not forbidden to assume DM – DE interaction by arbitrarily 
splitting as: 

 

 

 

    with      a phenomenological descriptor of the interaction (positive          

     corresponds to energy transfer from DE to DM and vice versa).  

 

 

 Despite possible pathologies (curvature perturbation blowing up in super-
Hubble scales [Valiviita,Majerotto,Maartens, JCAP 0807]) it leads to interesting 
cosmological behavior. 
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Phenomenological Models 

 I)  
 

 II) 
   

 III) 

 etc… 
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Phenomenological Models 

 I)  
 

 II) 
   

 III) 

 etc… 

 Obtain late time attractors with  
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Another approach to phenomenological models 

 If Q=0 then                        . Instead of imposing Q one can parametrize its effect 
assuming:    

                                   (perturbations can also be studied; obtain matter overdensity) 

 

 

 

 

 

 

 

H0+SNIa+BAO+CMB 

 Slight tendency towards interacting DE 

      δ<0 implies energy flow DM  ->  DE 

 

 

 

 

 

 

 

 

 

  

 

 

  

  

3

0 / aDMDM  

  3

0 /aDMDM    [Wang, Meng CQG 22]  

   [Nunes, Pan, Saridakis  PRD 94]  

E.N.Saridakis –  UOA,  Dec. 2018 



52 

 

 

52 

f(R) gravity 

   

 

 

 

 

 

 

 Field Equations (metric formalism): 

 

 Conformal transformation: 
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  Firedmann Equations (metric formalism): 
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f(R) cosmology - Inflation 
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  Firedmann Equations (metric formalism): 

 

 

 

 Inflation: e.g. Starobinsky inflation 
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f(R) cosmology - Inflation 
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f(R) cosmology – Dark energy  
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f(R) cosmology – Dark energy  
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f(R) cosmology – Dark energy  

   [Nunes, Pan, Saridakis, Abreu JCAP 1701]  
E.N.Saridakis –  UOA,  Dec. 2018 



58 

 

 

58 

Gravitational waves 

 The GWs are the tensor perturbations of the metric. Predicted in 1915, first 
observed in 2015. First astronomical observation ever, not related to E/M. 
 

 GWs from mergers:    

 

 

 

 

 

 

  Primordial GWs: 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

  

   [Abbott et al, LIGO Virgo PRL 116]  
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Gravitational waves 

 GW150914: Two black holes with                                   
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Gravitational waves 

 GW170817: Two neutron stars, distance 40 Mpc, redshift 0.0099 

 GRB170817A: The Electromagnetic counterpart. 

 

 

 

 

 

 

 

 

 

 

 

 The era of multi-messenger astronomy begins! 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

  

   [Abbott et al, LIGO Virgo PRL 119]  

   [Goldstein et al, Fermi Gamma Ray Burst Monitor 
Astrophys.J 848]  
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Gravitational waves 

 In case of GWs from black hole mergers we know their properties at the 
moment of detection, and their direction (in case of three detectors). 
Assuming GR and ΛCDM we can extract their speed, distance, and properties 
at the moment of emission. 
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Gravitational waves 

 In case of GWs from black hole mergers we know their properties at the 
moment of detection, and their direction (in case of three detectors). 
Assuming GR and ΛCDM we can extract their speed, distance, and properties 
at the moment of emission. 

 

 

 In case of GWs from neutron star mergers, and their E/M counterpart, we 
know their properties at the moment of detection and their direction, but 
using the implied physics from the E/M information we can extract their 
speed, distance and properties at the moment of emission, independently of 
the underlying gravitational theory and cosmological scenario. 

 

 

 Great tool for testing General Relativity and cosmological scenarios! 
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Gravitational waves 

 An immediate result: The speed of GWs is equal to the speed of light!  

     GW170817 time delay                         constrains: 
 

 Excludes a large number of theories that were consistent with other data! 
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Gravitational waves 

 For tensor perturbations:  
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Gravitational waves 
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Gravitational waves 

 Polarizations:  
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Gravitational waves 

 Testing General Relativity, modified gravities, and various cosmological scenarios. 

 The GWs properties at emission and detection are determined by them. 
 

 Examples: f(T), f(R), f(Q), etc 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

  

[Nunes, Pan, Saridakis, PRD98] 

[Cai, Li, Saridakis, Xue PRD97] 

[Farrugia, Said, Gakis, Saridakis, PRD97] 

[Soudi, Farrugia, Gakis, Said, Saridakis, 1810.08220] 
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Conclusions 

 i) The Standard Model of Cosmology may ask for new physics, definitely for 
inflation and dark matter, probably for dark energy. 

 
 

 ii) We can modify the Universe content, or/and the gravitational theory. 

 
 

 iii) We use various observational data (SnIa, CMB, BAO, H(z), LSS etc) in 
order to constrain the proposed theories. 

 
 

 iv) The advancing gravitational wave astronomy, 

         and especially multi-messenger astronomy 

         offers a novel tool to test General Relativity 

         and cosmological scenarios in great accuracy. 
 

 

 v) A new era has begun! 
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Outlook 

  A huge project is ahead for the community: 
 

 i) Calculate the exact form of GWs created from mergers in various gravitational 
theories (needs numerical gravity). 
 

 ii) Calculate the propagation of these GWs from emission to detection for 
various cosmological scenarios. 
 

 iii) Use multi-messenger data to test General Relativity, break degeneracies and 
constrain or exclude the various theories. 
 

 iv) Elaborate also the creation and possible detection of primordial GWs. 
 

 v) For f(T) gravity, f(R,G), running vacuum, higher-order theories, entropic 
gravity etc, currently under investigation 
 

 

 vi) Get prepared for the huge flow of data that will come!  

 

 

[Saridakis, Assimakis, Erices, Gakis, Palikaris, Theodosiou] 
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 “There are  the ones  that invent occult 
fluids to understand  the Laws of Nature. 
They come to  conclusions, but they now 
run out into dreams and chimeras 
neglecting the true constitutions of the 
things...                                    
However  there are  those that  from  the    
simplest observation of Nature, they 
reproduce New Forces”… 

 

From the Preface of PRINCIPIA (II edition) 1687 
by Isaac Newton, written by Mr. Roger Cotes. 
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Tension1 – fσ8 
 Tension between the data and Planck/ΛCDM. The data indicate a lack of 

“gravitational power” in structures on intermediate-small cosmological 
scales. 

 

 

   [Kazantzidis, Perivolaropoulos, PRD97]  
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Tension2 – H0 
 Tension between the data (direct measurements) and Planck/ΛCDM (indirect 

measurements). The data indicate a lack of “gravitational power”. 

 

 

 

 

   [Bernal, Verde, Riess, JCAP1610]  [Riess et al, Astrophys.J 826]  


