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Natural dynamos

The existence of planetary, stellar and galactic magnetic fields is
attributed to the dynamo action

The mechanism by which a background turbulent flow spontaneously
generates a magnetic field
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Why are magnetic fields important?

Impact of solar wind on the
planet’s magnetosphere !
magnetic storms

Geomagnetic storms: observed
as aurorae by the naked eye

Magnetic storms can cause:

1 interruptions to radio
communications and GPS

2 disruption to power grids

3 damage to space-crafts

4 extinction of certain species
that use magnetoception
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Dynamo problem

@tB = r ⇥ (u ⇥ B) + ⌘r2B

@tB + u · rB = B · ru +

1
Rm

r2B

Rm =

|r⇥(u⇥B)|
|⌘r2B| = UL/⌘

The induction equation is linear in B

It admits solutions of the form B = b(x) exp(�t)

The induction equation becomes an eigenvalue problem
with � = � + i!

For a given u we have the following solutions
� < 0: non-dynamo
� > 0: kinematic dynamo - Rmc
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Anti-dynamo theorems

Cowling’s Theorem (1934)

Axisymmetric magnetic fields cannot be generated via dynamo
action

Field must be inherently 3D for � > 0

Zel’dovich Theorem (1957)

Planar velocity fields (2D flow) are not capable of sustaining
dynamo action

) All analytical and numerical calculations will have to be 3D

Bas–lhc Ntàllac 5 Tm†ma Fusik†c, EKPA



Laboratory dynamos

Since 1960s several experimental groups try to reproduce the
dynamo instability in the laboratory using liquid metals

However, so far, unconstrained dynamos driven just by turbulent
flows have not been achieved in the laboratory!!!

Successful experimental dynamos rely either in constraining the flow
(Riga and Karlsruhe) or using ferromagnetic materials (VKS).
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8.2.7. THE RIGA DYNAMO

After the promising results of the Leningrad experiment (see Section 8.2.5), the lat-
vian team built a new experiment: the shape and sizes of the central channel were
changed, an important effort was done to optimize the velocity profiles both with ex-
periments in water and numerical modelling (Stefani et al., 1999; see Section 8.3.5).
The shape of the propeller was also optimised and eventually, the main change was
the replacement of the electromagnetic pumps by two powerful motors driving the
propeller at the top of the device (Gailitis et al., 2002b).

The first experimental evidence of dynamo action was obtained in Riga at the end
of 1999 (Gailitis et al., 2000): an imposed field as close as possible to the expected
one – from theoretical studied of the Ponomarenko dynamo – was amplified during
an experiment, as measured by flux gate-sensors along the vertical of the device.
The magnetic fields spatial distribution and frequency were studied as a function
of the rotation rate of the propeller above the critical magnetic Reynolds number.
Saturation of the self-sustained magnetic field was observed (Gailitis et al., 2001).

2R = 0.25m

0.43m

0.80m

propeller

H = 3m

!

sodium at rest

� Pmotor  120 kW .

� �  2200 rpm .

� B0 is an helicoidal field along the
vertical axis of the device.

Measurements:

� Induced magnetic field with flux gates
and Hall sensor at different heights
along the vertical.

� Motor power delivered as a function
of rotation rate.

� Monitoring of the sodium
temperature.

� Rm = µ0��R

2  42.

© 2007 by Université Joseph Fourier
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8.2.8. THE KARLSRUHE DYNAMO

Self-excitation was also observed in the Karlsruhe device, which was based on
a theoretical two-scale periodic kinematic dynamo of G.O. Roberts (1972), see
Section 1.5. It was designed jointly by Busse (Bayreuth) and Müller (Karlsruhe)
(Busse et al., 1996). A set of 52 spin-generators were assembled in a large con-
tainer, a pair of spin-generators being distinctively shown in the figure (Müller &
Stieglitz, 2000). Each generator contains a central tube in which the sodium is
flowing unidirectionally with a flow rate VC and an outer part in which the sodium
flows with an helicoidal forced motion and a flow rate VH . The sodium is go-
ing up and down in his neighbouring generator. The gap between the 52 heli-
coidal cylinders is filled with liquid sodium at rest. Three electromagnetic pumps
forced the sodium to flow in and out of the container, one pump running the sodium
through the central tubes, and the two other ones through the helicoidal outer part.

H = 0.703m

2R = 1.7m

sodium flow

+ –
–

2a = 0.21m

Sodium flow rates were mon-
itored. Beyond the critical
rate for both flows (in the
central and the outer parts),
magnetic measurements
showed that the ambient
magnetic field was rapidly
amplified and saturated after
a transient time (Stieglitz &
Müller, 2001; Müller et al.,
2004).

� Flow sodium rates Qsodium = 70 � 120 m

3
h

�1
.

� Pthreepumps  500 kW .

� B0 ambient magnetic field.

Measurements:
� Induced magnetic field (three components) at various
locations inside and outside the container (Hall probes).
� Induced magnetic field with compass needles outside
the container.
� Flow rates of sodium.
� Sodium temperature.

� Umax = Qsodiummax/(�a

2
) � 1 m s

�1

� Rm = µ0�UmaxR
2  10

© 2007 by Université Joseph Fourier
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8.2.10. VON KÁRMÁN SODIUM EXPERIMENTS

The Von Kármán Sodium or VKS experiments performed in Cadarache (France)
follows from the Von Kármán Gallium (see Section 8.2.6) experiments, at higher
magnetic Reynolds number (Bourgoin et al., 2002; Marié et al., 2002). Again,
the VKS flow is of the same type as that of Dudley & James (1989) with possibly
a relatively low critical magnetic Reynolds number. The VKS team has placed a
considerable amount of energy in tuning this experiments, both experimentally (with
water and with gallium with similar set-ups) and numerically [by using kinematic
dynamo calculations based on velocity flows measured in water (Bourgoin et al.,
2002; Marié et al., 2002; Marié et al., 2003), see Section 8.3.5]. In particular, they
examined the optimised ratio of poloidal versus toroidal velocity for the dynamo
action. So far, they have observed an amplification of the imposed magnetic field but
not reached a self-sustained dynamo (Bourgoin et al., 2002; Pétrélis et al., 2003).13

� Pmotor = 2 ⇥ 75 kW .

� �disc  1500 rpm .

� B0  0.002 T.

Measurements:

� Induced magnetic field inside the
flow using a 3D Hall probe.

� Dynamic pressure at the wall.

� LDV velocity measurements in
water experiments.

� Rm = µ0��discRdiscR  50

B0

H = 2R

~ 70 litres
sodium

!1

!2

R = 0.2m
Rdisk = 0.15m

13 Editorial comment: see recent developments in the concluding chapter of the book.

© 2007 by Université Joseph Fourier

Riga Karlsruhe VKS - Cadarache
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The challenge for liquid-metal dynamos

Liquid Sodium at T = 393K

⌫ ⇠ 10

�7
m

2
/s, ⌘ ⇠ 10

�1
m

2
/s

Magnetic Prandtl number
Pm = ⌫/⌘ = Rm/Re ⌧ 1

Kinetic Reynolds number
Re = UL/⌫ � 1

Energy injection rate
✏ / Re

3

The dynamo onset is extremely
costly to reach in the laboratory

P1: Sanjay

Chapmanmono 3355˙CH13 November 23, 2004 11:14
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Reynolds number, Re:

Rm = V L
η

, Re = V L
ν

. (1)

Their ratio is the magnetic Prandtl number, Prm = µ0σν = ν/η. It
only depends on the fluid and is usually very small (except for some
astrophysical plasmas). Magnetic field self-generation can be obtained
only for large Rm for which Joule dissipation can be overcome (for most
known fluid dynamos, the dynamo threshold Rmc is roughly in the range
10–100). Therefore, the kinetic Reynolds number is very large and the
flow is strongly turbulent. This is the case of the Earth or the Sun and
also the context of experiments with liquid metals for which Prm < 10−5.
Several dynamo regimes are displayed in Fig. 1. Direct numerical sim-
ulations are possible for values of Prm orders of magnitude larger than
the realistic ones for the Sun, the Earth or laboratory experiments, first
because it is not possible to handle a too large difference between the
timescale of diffusion of the magnetic field and the one of momentum.
Second, although the dynamo threshold should be some curve Rmc =
f (Prm) in Fig. 1, one does not expect a large variation of Rmc on Prm
for a given forcing of the flow. Therefore, a small Prm dynamo occurs for

Prm

Rm
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Figure 1. Relevant parameters for the Earth (Ear.), simulations (Sim.), Jupiter (Jup.),
the Sun, estimates for galaxy (Gal.), and experiments (Exp.), showing the Reynolds num-
ber Re, magnetic Prandtl number Prm, and the magnetic Reynolds number Rm. Note
that Rm = RePrm (some estimates from Zeldovich et al., 1983).

Copyright 2005 CRC Press

Fauve & Lathrop, FluidDynAstoGeo (2005)
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Numerical dynamos

Degrees of freedom in DNS
N ⌘ (L/`d)

3 / Re

9/4 with
`d / (⌫

3
/✏)

1/4

The value of Rmc increases
monotonically for values of Pm ⇠ 1

Turbulent fluctuations prevent the
dynamo instability

For high Re a finite value of Rmc was
reached independent of Re, i.e.
Rm

turb
c ⌘ limRe!1 Rmc

Magnetic-energy spectrum.—The shape of the
magnetic-energy spectrum is qualitatively different for
Pm ! 1 and Pm" 1 (see Fig. 3). At Pm above and just
below unity, the spectrum has a positive slope and its peak

is at the resistive scale. This is typical for the fluctuation
dynamo at Pm ! 1—in the limit Pm# 1, the Kazantsev
[18] k$3=2 spectrum emerges [8]. As Pm is decreased, the
spectrum flattens and then appears to develop a negative
slope in the inertial range. At current resolutions, it is not
possible to determine definitively what the asymptotic
spectral slope is and whether the spectral peak is indepen-
dent of Rm or moves with the resistive scale as kpeak /
Rm3=4.

Comparison with simulations with a mean flow.—
Several authors [13,19–22] have been motivated by the
liquid-metal dynamo experiments to investigate the dy-
namo action at low Pm in numerical simulations where
the forcing was spatially inhomogeneous and constant in
time rather than random. The velocity field in these simu-
lations consisted of a time-independent mean flow and an
energetically a few times weaker fluctuating component
(turbulence). The stability curves Rmc%Re& obtained in
these studies have an entirely different origin than ours.
In order to illustrate the difference, Fig. 2 shows the
stability curves for simulations with Taylor-Green forcing,
using published data [13,19]. We see that the dynamo
threshold for the simulations with a mean flow is much
lower than for our homogeneous simulations. The differ-
ence is not merely quantitative. The mean flows in question
are mean-field dynamos (even in the case of the nonhelical
Taylor-Green forcing). This is confirmed by the ordered
box-scale structure of the growing magnetic field reported
for these simulations at Pm ! 1 (the lower part of their
stability curve). For Pm ! 1, the threshold for the field
amplification is Rmc ' 10, which is a typical situation for
mean-field dynamos [12]. The presence of magnetic en-
ergy at small scales is probably due to the random tangling
of the mean field by turbulence, rather than to the fluctua-

 

FIG. 3 (color online). Normalized spectra of kinetic energy (compensated by k5=3) and (growing) magnetic energy for fixed ! (
5) 10*4 (the Rm' 450 sequence from Fig. 1) and increasing Re: (a) Laplacian runs, (b) hyperviscous runs.

 

FIG. 2 (color online). The stability curve Rmc vs Re. ‘‘Error
bars’’ connect (Re, Rm) for decaying and growing runs used to
obtain points on the stability curve. Stability curves based on the
Laplacian and hyperviscous runs are shown separately. For
comparison, we also plot the Rmc%Re& curve obtained in simu-
lations employing TG1 [19] and TG2 forcing [13] (the three
highest-Re points in the latter case were obtained by large-eddy
simulations). The values of Re and Rm are recalculated accord-
ing to our definitions using the forcing wave number k0 rather
than the dynamical integral scale as in [13,19].

PRL 98, 208501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
18 MAY 2007

208501-3

Iskakov et al., PRL (2007)
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Turbulent dynamos

Natural dynamos are highly turbulent and so inherently multi-scale

Pm � 1 Pm ⌧ 1

Galaxies Planets, stars, liquid-metal experiments

MHD Dynamos and Turbulence v

Figure 1. Possible schematic spectra for kinetic energy (solid line) and magnetic energy (dashed
line) for dynamo action at (a) high and (b) low Pm. When Pm is large the resistive scale for
the magnetic field is much smaller than a typical eddy and so the flow appears large-scale and
smooth. When Pm is small, the resistive scale lies in the inertial range of the turbulence where
the velocity is rough.

one can seek solutions of the form B = B(x) exp �t and the induction equation becomes

a classical eigenvalue problem for the dynamo growth-rate �. The value of Rm for which

the real part of the growth-rate (�(�)) becomes positive is termed the critical magnetic

Reynolds number Rm

crit
for the onset of dynamo action. Another commonly considered

case is one where the velocity is periodic in time, then the induction equation defines a

Floquet problem and solutions consist of a periodic and an exponentially growing part

and again one can define Rm

crit
in analogy with the steady case. Finally there is the

case in which the velocity is a stationary random process. Here one utilises a statistical

description of the field, and seeks conditions under which the moments of the probability

distribution function for B = |B| grow exponentially (Zeldovich et al. 1990). In all of

these cases Rm

crit
corresponds to that value at which the induction processes overcome

di�usion. Näıvely one would expect that once Rm > Rm

crit
dynamo action would be

guaranteed, but this, actually, is not necessarily so. In fact establishing dynamo action in

the limit Rm ! 1, the so-called fast-dynamo problem, is technically very di�cult (see

for instance Childress & Gilbert 1995). For instance it has been shown that flows that

do not have chaotic streamlines can not be fast dynamos (Klapper & Young 1995). This

exemplifies the somewhat paradoxical role of di�usion in dynamo action. On the one hand

too much di�usion suppresses dynamo action, on the other hand not enough di�usion

also makes dynamo action impossible. The reason is that reconnection is required in

order to change the magnetic topology to allow for the growth of the field (see e.g.

Dormy & Soward 2007). In fact, as we shall see, the di�usive scale at which reconnection

occurs plays an important role in determining the properties of dynamo action.

Once a growing solution has been identified, it is of interest to determine properties

of the eigenfunction. The detailed properties depend on the precise form of the veloc-

ity, but typically most of the energy of the growing eigenfunction is concentrated at

the reconnection scales. However there is considerable interest, mostly astrophysically

motivated, in cases where a significant fraction of the energy is found on scales larger

than a typical scale for the velocity. This is called the large-scale dynamo problem

and is most commonly discussed within the framework of mean field electrodynamics

(Mo�att 1978, Krause & Raedler 1980). One of the early successes of this kinematic

theory was to establish that a lack of reflectional symmetry of the underlying flow is

a necessary condition for the generation of large-scale fields. There is a substantial

MHD Dynamos and Turbulence v
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line) for dynamo action at (a) high and (b) low Pm. When Pm is large the resistive scale for
the magnetic field is much smaller than a typical eddy and so the flow appears large-scale and
smooth. When Pm is small, the resistive scale lies in the inertial range of the turbulence where
the velocity is rough.

one can seek solutions of the form B = B(x) exp �t and the induction equation becomes

a classical eigenvalue problem for the dynamo growth-rate �. The value of Rm for which

the real part of the growth-rate (�(�)) becomes positive is termed the critical magnetic
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case is one where the velocity is periodic in time, then the induction equation defines a

Floquet problem and solutions consist of a periodic and an exponentially growing part

and again one can define Rm
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case in which the velocity is a stationary random process. Here one utilises a statistical

description of the field, and seeks conditions under which the moments of the probability

distribution function for B = |B| grow exponentially (Zeldovich et al. 1990). In all of

these cases Rm

crit
corresponds to that value at which the induction processes overcome

di�usion. Näıvely one would expect that once Rm > Rm

crit
dynamo action would be

guaranteed, but this, actually, is not necessarily so. In fact establishing dynamo action in

the limit Rm ! 1, the so-called fast-dynamo problem, is technically very di�cult (see

for instance Childress & Gilbert 1995). For instance it has been shown that flows that

do not have chaotic streamlines can not be fast dynamos (Klapper & Young 1995). This

exemplifies the somewhat paradoxical role of di�usion in dynamo action. On the one hand

too much di�usion suppresses dynamo action, on the other hand not enough di�usion

also makes dynamo action impossible. The reason is that reconnection is required in

order to change the magnetic topology to allow for the growth of the field (see e.g.

Dormy & Soward 2007). In fact, as we shall see, the di�usive scale at which reconnection

occurs plays an important role in determining the properties of dynamo action.

Once a growing solution has been identified, it is of interest to determine properties

of the eigenfunction. The detailed properties depend on the precise form of the veloc-

ity, but typically most of the energy of the growing eigenfunction is concentrated at

the reconnection scales. However there is considerable interest, mostly astrophysically

motivated, in cases where a significant fraction of the energy is found on scales larger

than a typical scale for the velocity. This is called the large-scale dynamo problem

and is most commonly discussed within the framework of mean field electrodynamics

(Mo�att 1978, Krause & Raedler 1980). One of the early successes of this kinematic

theory was to establish that a lack of reflectional symmetry of the underlying flow is

a necessary condition for the generation of large-scale fields. There is a substantial

Pm � 1: no problem except that the field is generated on very
small scales

Pm ⌧ 1: the magnetic field dissipates in the inertial range of the
turbulence

Note that it is harder to drive a dynamo with a rough velocity than
with a smooth velocity
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Rotation of planets & stars
Rotation determines the main characteristics of the resulting flows and
magnetic fields of planets and stars

Courtesy by NASA

Courtesy by C. Garra↵o (Harvard)
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Rotating MHD equations

@tu + u · ru = � 1

⇢

rP � 2⌦ ⇥ u + ⌫r2u + f

@tB =r ⇥ (u ⇥ B) + ⌘r2B

⌦ = ⌦

ˆez

Non-helical cellular flow at kfLbox = 4

f = f0(cos(kfy), sin(kfx), cos(kfy) + sin(kfx))

The non-dimensional parameters Re =

u
kf⌫ , Rm =

u
kf⌘ , Ro =

ukf

2⌦

with u = (✏/kf )

1/3 and ✏ ⌘ hu · fi
Power required for the dynamo onset ✏c / (Rm

turb
c )

3

with Rm

turb
c ⌘ limRe!1 Rmc

We are interested in the following limits:

Re � 1 limit (or Pm ⌧ 1): we use hyperviscosity r8 for u only

Ro ⌧ 1 limit: we use an asymptotic quasi-2D model

Bas–lhc Ntàllac 11 Tm†ma Fusik†c, EKPA



Fast rotating limit Ro ⌧ 1

In this limit, u becomes invariant along the axis of rotation

@tu2D + u2D · ru2D = �rp + ⌫r2u2D + f2D

@tuz + u2D · r uz = ⌫r2
uz + fz

with u2D = r ⇥  

ˆez.

Due to the invariance of the flow along the z-direction B = b(x, y, t)e

ikzz

Each kz-mode evolves independently and the induction equation reads

@tb + u2D · rb + uzikzb = b · ru2D + ⌘

�
� � k

2
z

�
b

The r · B = 0 for each magnetic mode gives

@xbx(x, y, t) + @xby(x, y, t) = �ikzbz(x, y, t)

In this limit we follow only the kz = 1 mode that was found to be the
most unstable mode (see Seshasayanan & Alexakis, JFM 2016)
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Rotating turbulent flows
A turbulence to turbulence transition ...
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the system transitions from one turbulent state (inverse
cascading) to an other (forward cascading) varying a
parameter µ. (µ is not Re)

the transition occurs in the presence of turbulent noise

these transitions are not only observed as dimensional (ie 2D
to 3D), but weak to strong, HD to MHD, ...

these transitions are not only observed for the energy cascade
but also for other invariants (magnetic helicity, square vector
potential, wave action, ...)
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Rotating turbulence (Taylor Green Forcing)

Ω

@tu+u · ru+2⌦⇥u = �rP+⌫�u+F, r·u = 0, +B.C.

r ⇥ · · · �
@tw+u · rw+2⌦@zu = w · ru+⌫�w+r ⇥ F, w = r ⇥ u,

The transition from 2D to 3D occurs when the largest mode
becomes unstable:

⌦ ⇠ U/` or Ro ⌘ U/⌦L ' 1

20 / 62 HDR
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Dynamics of saturated energy condensation in two-dimensional turbulence

Chi-kwan Chan,1,* Dhrubaditya Mitra,1,† and Axel Brandenburg1,2,‡
1NORDITA, Roslagstullsbacken 23, SE-10691, Stockholm, Sweden

2Department of Astronomy, Stockholm University, SE-10691, Stockholm, Sweden
(Received 2 October 2011; revised manuscript received 2 February 2012; published 28 March 2012)

In two-dimensional forced Navier-Stokes turbulence, energy cascades to the largest scales in the system to
form a pair of coherent vortices known as the Bose condensate. We show, both numerically and analytically,
that the energy condensation saturates and the system reaches a statistically stationary state. The time scale of
saturation is inversely proportional to the viscosity and the saturation energy level is determined by both the
viscosity and the force. We further show that, without sufficient resolution to resolve the small-scale enstrophy
spectrum, numerical simulations can give a spurious result for the saturation energy level. We also find that
the movement of the condensate is similar to the motion of an inertial particle with an effective drag force.
Furthermore, we show that the profile of the saturated coherent vortices can be described by a Gaussian core with
exponential wings.

DOI: 10.1103/PhysRevE.85.036315 PACS number(s): 47.27.De, 47.27.E−

I. INTRODUCTION

Two-dimensional (2D) hydrodynamic turbulence is funda-
mentally different from its three-dimensional counterpart. In
2D, small vortices can merge to form bigger coherent vortices.
This is because the equations of ideal hydrodynamics in two
dimensions have, in addition to energy, also enstrophy as a
conserved quantity. With an external force at an intermediate
scale and viscous dissipation, energy inversely cascades to
larger length scales and enstrophy directly cascades to smaller
length scales [1–3].

Let us now consider 2D turbulence in a finite domain of
size L. The smallest wave number allowed in this system is
k1 ≡ 2π/L. Due to the inverse cascade, energy piles up at k1
provided there is no large-scale friction. This phenomenon,
sometimes called Bose condensation in 2D turbulence (see
Fig. 1), was first predicted by Kraichnan [1]. It was studied
numerically by Hossain et al. [4], Smith and Yakhot [5], [6],
Chertkov et al. [7] and experimentally by Paret and Tabeling
[8], Xia et al. [9].

Following standard convention, we refer to the modes at
|k| = k1 as the condensate in this paper. For a fixed nonzero
viscosity ν the energy of the condensate vortices cannot grow
without limit but saturate [10,11]. The saturation occurs at time
scales of the order of 1/νk2

1 . This is an unusual example of
viscous effects playing an important role in fluid turbulence at
large length scales. In this paper we show, by direct numerical
simulations (DNS), that the saturation value of the condensate
energy is not only determined by viscosity but also by the
forcing wave number ki. Furthermore, we will demonstrate
that the direct enstrophy cascade must be well resolved for
accurate numerical determination of the saturation.

Motivated by the analogy between the formation of
large-scale structures in two-dimensional turbulence and
the large-scale dynamo process in three-dimensional helical
magnetohydrodynamic turbulence [12], we propose a simple
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three-scale model which is able to capture the important
aspects of our numerical results. We further show that the
Lagrangian dynamics of the condensate vortices can be
described by Langevin equations for particles with inertia.
Finally, we measure the profile of the saturated coherent
vortices, which consist of the condensate and its higher
harmonics. The vorticity at the cores are well fitted by a sharp
Gaussian, while the wings fall off exponentially.

II. NUMERICAL SIMULATIONS

Let ψ be the 2D (scalar) stream function. The velocity is
then u = (∂yψ, − ∂xψ) and the z component of the vorticity

FIG. 1. (Color online) Pseudocolor plot of vorticity showing Bose
condensation. Red (the top-left vortex) and blue (the bottom-right
vortex) represent positive and negative vorticity in physical space,
respectively. The color scale is shown in the color bar on the right,
which is chosen to make the fluctuation visible. The vorticity is
normalized so that max |ω| = 1.
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In two-dimensional forced Navier-Stokes turbulence, energy cascades to the largest scales in the system to
form a pair of coherent vortices known as the Bose condensate. We show, both numerically and analytically,
that the energy condensation saturates and the system reaches a statistically stationary state. The time scale of
saturation is inversely proportional to the viscosity and the saturation energy level is determined by both the
viscosity and the force. We further show that, without sufficient resolution to resolve the small-scale enstrophy
spectrum, numerical simulations can give a spurious result for the saturation energy level. We also find that
the movement of the condensate is similar to the motion of an inertial particle with an effective drag force.
Furthermore, we show that the profile of the saturated coherent vortices can be described by a Gaussian core with
exponential wings.
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I. INTRODUCTION
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k1 ≡ 2π/L. Due to the inverse cascade, energy piles up at k1
provided there is no large-scale friction. This phenomenon,
sometimes called Bose condensation in 2D turbulence (see
Fig. 1), was first predicted by Kraichnan [1]. It was studied
numerically by Hossain et al. [4], Smith and Yakhot [5], [6],
Chertkov et al. [7] and experimentally by Paret and Tabeling
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Following standard convention, we refer to the modes at
|k| = k1 as the condensate in this paper. For a fixed nonzero
viscosity ν the energy of the condensate vortices cannot grow
without limit but saturate [10,11]. The saturation occurs at time
scales of the order of 1/νk2

1 . This is an unusual example of
viscous effects playing an important role in fluid turbulence at
large length scales. In this paper we show, by direct numerical
simulations (DNS), that the saturation value of the condensate
energy is not only determined by viscosity but also by the
forcing wave number ki. Furthermore, we will demonstrate
that the direct enstrophy cascade must be well resolved for
accurate numerical determination of the saturation.

Motivated by the analogy between the formation of
large-scale structures in two-dimensional turbulence and
the large-scale dynamo process in three-dimensional helical
magnetohydrodynamic turbulence [12], we propose a simple
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three-scale model which is able to capture the important
aspects of our numerical results. We further show that the
Lagrangian dynamics of the condensate vortices can be
described by Langevin equations for particles with inertia.
Finally, we measure the profile of the saturated coherent
vortices, which consist of the condensate and its higher
harmonics. The vorticity at the cores are well fitted by a sharp
Gaussian, while the wings fall off exponentially.

II. NUMERICAL SIMULATIONS

Let ψ be the 2D (scalar) stream function. The velocity is
then u = (∂yψ, − ∂xψ) and the z component of the vorticity

FIG. 1. (Color online) Pseudocolor plot of vorticity showing Bose
condensation. Red (the top-left vortex) and blue (the bottom-right
vortex) represent positive and negative vorticity in physical space,
respectively. The color scale is shown in the color bar on the right,
which is chosen to make the fluctuation visible. The vorticity is
normalized so that max |ω| = 1.
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Rotating turbulence (Taylor Green Forcing)

Ω

@tu+u · ru+2⌦⇥u = �rP+⌫�u+F, r·u = 0, +B.C.

r ⇥ · · · �
@tw+u · rw+2⌦@zu = w · ru+⌫�w+r ⇥ F, w = r ⇥ u,

The transition from 2D to 3D occurs when the largest mode
becomes unstable:

⌦ ⇠ U/` or Ro ⌘ U/⌦L ' 1
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Critical magnetic Reynolds number Rm

c

To calculate Rmc we run simulations of the same flow (same Re

and Ro) for di↵erent values of Rm

t
0 2000 4000 6000 8000 10000

⟨|
B
|2
⟩

10
-60

10
-40

10
-20

10
0

η = 6 · 10−3

η = 6.5 · 10−3

η = 7 · 10−3

η = 7.5 · 10−3

η = 8 · 10−3

The growth rate of the magnetic field is computed as

� ⌘ lim

t!1

1

2t

log

h|B|2(t)i
h|B|2(0)i

Rmc is determined by linear interpolation of the growth-rates
between dynamo (� > 0) and non-dynamo (� < 0) runs
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Rm

c

as a function of Re for di↵erent ⌦

100 101 102 103

Re

0

5

10

15

20

25

30

35

40

R
m

c

Re � 1
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⌦ =50
⌦ = 1

⌦ = 0: similar behaviour to other studies of non-rotating dynamos

⌦ = 1: initial hindering e↵ect for the dynamo by rotation

⌦ � 3: much lower threshold for the dynamo instability

⌦ = 3: same threshold, implying that the destructive e↵ect of the
3D turbulent fluctuations on dynamo has already disappeared
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Power requirements
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The ratio
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c |⌦=3

⇠ 13

So, power consumption reduces by

✏c|⌦=0

✏c|⌦=3
⇠ 2 · 10

3
!!!

since ✏c / (Rm
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c )

3, with Rm

turb
c ⌘ limRe!1 Rmc
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Practical considerations

Technical constrains limit:

the size of liquid metal laboratory experiments L ⇠ 2m

the magnetic di↵usivity of liquid sodium ⌘ ' 10

�1 m2
/s

the density of liquid sodium ⇢ ' 10

3 kg/m3

Assuming Rmc ' 50, energy consumption ✏ > 100 kW

The VKS experiment consumed 300 kW at its peak.

This large ✏ limits dynamo experiments to large industrial size laboratories

A reduction of Rmc even by a factor of 2, reduces this consumption rate
to ⇠ 10 kW

Such a reduction can make dynamos attainable in small scale laboratories!
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Kinetic energy spectra
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⌦ =0
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Large enstrophy implies a large stretching rate u`/` of the magnetic
field lines

⌦ = 0: close to Kolmogorov behaviour with E(k) / k

�5/3 with the
strongest stretching rate at the small incoherent scales

⌦ = 3: k

2
E(k) decreases with k. At the smallest scales the k

1/3

starts to form again

small scale fluctuations are suppressed
the dominant stretching rate is restricted to the large scales
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Magnetic energy spectra

Magnetic energy spectra for Rm close to the onset
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⌦ = 0: spectrum is almost flat with an exponential cut-o↵

⌦ = 3: spectrum decreases fast with k, and peaks at (kf = 3),
while magnetic energy at k = 1 is an order of magnitude smaller
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Visualisations
Structures from an unstable eigenmode of the dynamo at ⌦ = 3

vertical vorticity field !z vertical currect field jz

The dynamo behaves as if it is driven by an organised laminar flow
(i.e. high Pm behaviour) even at very large Re (i.e. at low values
of Pm).
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Dynamo growth rate dependence on coherence time

We compare dynamos with the same spectra but di↵erent coherence time

We consider the flow with ⌦ = 3

We randomise the phases of each Fourier
coe�cient at di↵erent coherence times ⌧c

ûnew(k?) = û(k?) exp(i�k?),
�k? : random numbers
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⌧c/�t = 1: flow without randomised phases (⇤)

⌧c/�t = 1: flow with delta-correlation in time

Bas–lhc Ntàllac 22 Tm†ma Fusik†c, EKPA



Conclusions

Rmc for a turbulent non-helical dynamo in the Pm ⌧ 1 limit can
be significantly reduced if the flow is submitted to global rotation

Even for moderate rotation rates (i.e. Ro = 0.2) the required
energy injection rate can be reduced by a factor of more than 10

3

This suggests a new paradigm to realise liquid metal dynamo
experiments in small-scale laboratories

This strong decrease of Rmc is due to

1 the suppression of turbulent fluctuations and
2 the spatio-temporal organisation of the large scales

The dynamo growth rate is determined by the long-lived large scale
coherent eddies
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