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Natural dynamos

The existence of planetary, stellar and galactic magnetic fields is
attributed to the dynamo action

The mechanism by which a background turbulent flow spontaneously
generates a magnetic field
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Why are magnetic fields important?

@ Impact of solar wind on the
planet's magnetosphere —
magnetic storms

o Geomagnetic storms: observed
as aurorae by the naked eye
@ Magnetic storms can cause:

@ interruptions to radio
communications and GPS

disruption to power grids

damage to space-crafts

© 00

extinction of certain species
that use magnetoception
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Dynamo problem
9B =V x (ux B)+nV?B
8tB+u-VB:B-Vu+$V2B

Vx(uxB
o Rm = YxuxB)| l,jgg' L =vuL/my

@ The induction equation is linear in B
e It admits solutions of the form B = b(x) exp(\t)

e The induction equation becomes an eigenvalue problem
with A = v + iw

e For a given u we have the following solutions

e v < 0: non-dynamo
e 7 > 0: kinematic dynamo - Rm,
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Anti-dynamo theorems

Cowling's Theorem (1934)

@ Axisymmetric magnetic fields cannot be generated via dynamo
action

@ Field must be inherently 3D for v > 0

Zel'dovich Theorem (1957)

@ Planar velocity fields (2D flow) are not capable of sustaining
dynamo action

. All analytical and numerical calculations will have to be 3D
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Laboratory dynamos

@ Since 1960s several experimental groups try to reproduce the
dynamo instability in the laboratory using liquid metals

@ However, so far, unconstrained dynamos driven just by turbulent
flows have not been achieved in the laboratory!!!

@ Successful experimental dynamos rely either in constraining the flow
(Riga and Karlsruhe) or using ferromagnetic materials (VKS).

@ L1
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propeller

By
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sodium at rest [ ’ ~ 70 litres,
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Riga Karlsruhe VKS - Cadarache
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The challenge for liquid-metal dynamos

108
@ Liquid Sodium at T' = 393 K 102
v~10""m?/s, n ~ 10"t m?/s 1o
@ Magnetic Prandtl number 100
Pm=v/n=Rm/Re <1 1071
N -2
@ Kinetic Reynolds number P 10
Re=UL/v>>1 1078
. . . 10_4
@ Energy injection rate
3 1075
e x Re
106
@ The dynamo onset is extremely 107 Ear.
costly to reach in the laboratory .
100 10" 102 108 10* 105 10% 107 108 10°

R

m

Fauve & Lathrop, FluidDynAstoGeo (2005)
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Numerical dynamos

@ Degrees of freedom in DNS
N = (L/ty)? o< Re®/* with
lg o (V3 )e)/*

@ The value of Rm,. increases
monotonically for values of Pm ~ 1

@ Turbulent fluctuations prevent the
dynamo instability

@ For high Re a finite value of Rm, was

reached independent of Re, i.e.
Rmi* = limpe 0o RMe
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[ —e— Laplacian viscosity |
f —-©—-/Bth—order hyperviscosity
r—a—= TG1, Ponty et al. 2008
TG2, Ponty et al. 2005
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Iskakov et al., PRL (2007)
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Turbulent dynamos

@ Natural dynamos are highly turbulent and so inherently multi-scale

Pm>1 Pm<«1
Galaxies Planets, stars, liquid-metal experiments
10° ‘ ‘ ‘ ‘ 10° ‘ ‘ ‘ ‘

10 10" 10® 10®° 10* 10°
k

@ Pm > 1: no problem except that the field is generated on very
small scales

@ Pm < 1: the magnetic field dissipates in the inertial range of the
turbulence

@ Note that it is harder to drive a dynamo with a rough velocity than
with a smooth velocity
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Rotation of planets & stars

Rotation determines the main characteristics of the resulting flows and
magnetic fields of planets and stars

Neptune

Jupiter

=
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Titt of magnetic a
10% % 5%
22,000 AT 23,000 AT 13,000 AT

Field at equator | 31,000 T 428,000 nT
20 Rgppr 18 Ry 25 Rpugune
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Courtesy by C. Garraffo (Harvard)
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Rotating MHD equations

8tu+u-Vu:f£VP729><u+VV2u+f
P
9B =V x (ux B) +nV°’B

o 2 =0Qe,

@ Non-helical cellular flow at kyLyo, = 4
f = fo(cos(ksy),sin(ksz), cos(kry) + sin(ksx))

@ The non-dimensional parameters Re = k;‘—y Rm = [t Ro = 54
with u = (¢/k;)*/3 and € = (u - f)

@ Power required for the dynamo onset ¢, oc (Rm’*?)
with Rmz’”l’ = limpe_oo RMe

3

We are interested in the following limits:

@ Re > 1 limit (or Pm < 1): we use hyperviscosity V# for u only

@ Ro < 1 limit: we use an asymptotic quasi-2D model
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Fast rotating limit Ro < 1

In this limit, u becomes invariant along the axis of rotation

atuZD +u,, - quD = _VP + Z/VZUZD + f2D
Owuy +u,, - Vu, = vV2u, + f-

with u,, =V x 9é,.

Due to the invariance of the flow along the z-direction B = b(z, y, t)ei*=*

Each k,-mode evolves independently and the induction equation reads
db+u,, - Vb+u.ik.b=b-Vu,, +n(A—kZ)b

The V - B = 0 for each magnetic mode gives

8xbx(x7ya )—|—8 b (.’,E Y, )__Zk b (1: Y, )

In this limit we follow only the k, = 1 mode that was found to be the
most unstable mode (see Seshasayanan & Alexakis, JFM 2016)
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Rotating turbulent flows

E(k)
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Chan et al., PRE (2012)
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Three regimes

Chan et al., PRE (2012)
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Critical magnetic Reynolds number Rm,.

@ To calculate Rm, we run simulations of the same flow (same Re
and Ro) for different values of Rm

10°
—n=6-103
—n=65-10"°
n="7-10"3 .
20 —77:7.5~1(?"
10 —n=8.10"3

0 2000 4000 6000 8000 10000
t

@ The growth rate of the magnetic field is computed as
= i L og UBE)
=0 2t 7 (IBI2(0))
@ Rm, is determined by linear interpolation of the growth-rates
between dynamo (v > 0) and non-dynamo (v < 0) runs
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Rm, as a function of Re for different (2

40

35|

1

3

Re > 1

10° 10* 107 10%

Q) = 0: similar behaviour to other studies of non-rotating dynamos

Q) = 1: initial hindering effect for the dynamo by rotation
@ > 3: much lower threshold for the dynamo instability

@ () = 3: same threshold, implying that the destructive effect of the
3D turbulent fluctuations on dynamo has already disappeared
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Power requirements
40

35

W = O
>t
s

113t

8

Re > 1

10° 10! 10? 10°
@ The ratio -

Rmc'” |Q:0
Rm:@“’“bm:g

@ So, power consumption reduces by

~ 13

celoso ooy 1y

6c|£2:3

since €. oc (Rmi®®)3, with Rmi*™® = limpe_, oo R,
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Practical considerations

Technical constrains limit:
@ the size of liquid metal laboratory experiments L ~ 2m
@ the magnetic diffusivity of liquid sodium 1 ~ 107t m?/s
@ the density of liquid sodium p ~ 103 kg/m3
Assuming Rm,. ~ 50, energy consumption € > 100 kW
The VKS experiment consumed 300 kW at its peak.
This large € limits dynamo experiments to large industrial size laboratories

A reduction of Rm, even by a factor of 2, reduces this consumption rate
to ~ 10 kW

Such a reduction can make dynamos attainable in small scale laboratories!
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Kinetic energy spectra

@ Large enstrophy implies a large stretching rate uy/¢ of the magnetic
field lines

@ Q = 0: close to Kolmogorov behaviour with E(k) oc k=%/3 with the
strongest stretching rate at the small incoherent scales

@ O = 3: k?E(k) decreases with k. At the smallest scales the k'/3
starts to form again

e small scale fluctuations are suppressed
e the dominant stretching rate is restricted to the large scales
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Magnetic energy spectra

Magnetic energy spectra for Rm close to the onset

109

@ ) = 0: spectrum is almost flat with an exponential cut-off

@ () = 3: spectrum decreases fast with &, and peaks at (k; = 3),
while magnetic energy at k = 1 is an order of magnitude smaller
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Visualisations

vertical vorticity field w,

Structures from an unstable eigenmode of the dynamo at 2 =3
Cy

vertical currect field 7,
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@ The dynamo behaves as if it is driven by an organised laminar flow

(i.e. high Pm behaviour) even at very large Re (i.e. at low values

T
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Dynamo growth rate dependence on coherence time

@ We compare dynamos with the same spectra but different coherence time

@ We consider the flow with 2 =3

@ We randomise the phases of each Fourier
coefficient at different coherence times 7,

° ﬁnew (kl) - ﬁ(kL) exp(igb,u),
¢x, : random numbers

ki = \/k92c+k§ _ 10° 102 104

7/ At

- o = N w »~ 0 o

@ 7./At = co: flow without randomised phases ([J)

o 7./At = 1: flow with delta-correlation in time
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Conclusions

@ Rm, for a turbulent non-helical dynamo in the Pm < 1 limit can
be significantly reduced if the flow is submitted to global rotation

@ Even for moderate rotation rates (i.e. Ro = 0.2) the required
energy injection rate can be reduced by a factor of more than 103

@ This suggests a new paradigm to realise liquid metal dynamo
experiments in small-scale laboratories

@ This strong decrease of Rm, is due to

@ the suppression of turbulent fluctuations and
@ the spatio-temporal organisation of the large scales

@ The dynamo growth rate is determined by the long-lived large scale
coherent eddies
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