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Magnetic helicity
Η=∫V

A⋅B dV B=∇×A

ω=∇×u

twist

writhe

H=(Tw +Wr )Φ2

single flux tube two closed flux tubes
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Why care?
● Conserved in ideal MHD (Woltjer 1958), along with energy and cross helicity

● Topological invariant; links cannot change by ‘frozen’ magnetic field lines
● Even in resistive MHD (reconnection), helicity is approximately conserved (Taylor 1975)
● Unlike energy, helicity goes to larger scales (inverse helicity cascade),

and also dissipates slower than energy in non-ideal MHD
● In MHD turbulence, helicity bounds the

energy distribution in the system
(Frisch et al. 1975)

● Linear force-free field = the minimum 

energy field for given helicity (Woltjer 1958)

Alexakis et al. 2006

large scales small scales

injection

cascade
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Applications

von der Linden et al. 2018

Plasma experiments
gyrating plasma kink: conversions between
magnetic and kinetic energies in
canonical flux tubes
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Applications

MHD turbulence
Helicity imposes restrictions on the relaxation, 
and leads to slower loss of magnetic energy

del Sordo et al. 2010
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Applications
AGN jets

Galactic large-scale magnetic field
produced from dynamo mechanism
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Applications
Radio bubbles in the intracluster medium 
inflated by AGN outflows

Braithwaite 2010
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Applications
● Fundamental role of the magnetic field in the Sun
● Complex topology
● Coronal mass ejections are caused by the need to 

expel the excess helicity accumulated in the corona

(Rust 1994)
● Helicity can provide eruptivity criteria

Pariat et al. 2017

eruption
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Ok, what’s the catch?

A'=A+∇ ξ

H '=H+∮ξB⋅d S

Η=∫V
A⋅B dV

magnetic helicity

under the gauge 
transformation

n̂⋅B|∂V=0

becomes

gauge independent 
for closed B
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Relative magnetic helicity

Berger & Field 1984, Finn & Antonsen 1985

B−B p

n̂⋅B|∂V= n̂⋅B p|∂V

relative magnetic helicity

gauge independent for closed 
(and solenoidal)A'=A+∇ ξ

H '=H+∮ξB⋅d S
• ∂V: the whole boundary
• reference field=potential
• no current→no helicity

Η=∫V
A⋅B dV

magnetic helicity

under the gauge 
transformation

n̂⋅B|∂V=0

becomes

gauge independent 
for closed B

B=B p+B j

RMH can uniquely be split into two
gauge-invariant components H=H

j
+H

pj

following the splitting of the MF
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Computation of relative magnetic helicity

Definition: Berger & Field 1984
theoretical investigations

Observational determination:     Chae 2001
many varieties developed

alternative approximate calculations
Computation in a Cartesian box:

      Thalmann et al. 2011
 Rudenko & Myshyakov 2011

     Valori et al. 2012
      Yang et al. 2013
  Moraitis et al. 2014
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Computation of relative magnetic helicity

Finite-volume methods
1. given B find B

p

2. given B, B
p
 find A, A

p

Moraitis et al. 2014

Valori et al. 2016, Space Science Reviews
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Computation in Cartesian case

solution of Laplace's 
equation

under Neumann BCs

in the finite volume

Potential magnetic field
satisfying condition

● BVP well defined only for flux-balanced magnetic fields
● FORTRAN routine HW3CRT from FISHPACK library (or D03FAF from NAG)
● Routine uses FFT method in non-homogeneous, uniform grid
● For non-uniform grid interpolation to and from a uniform grid is required

Step 1 – Potential field calculation



5 December 2018, Athens  

Computation in Cartesian case
Step 2 – Vector potentials calculation

invert with Valori et al. (2012) method
DeVore (2000) gauge

Simple gauge

Coulomb gauge

● Same method for both vector potentials
● Integrations: modified Simpson or trapezoidal rule, applicable also to non-uniform grid
● Top/bottom reference planes give different results – top is usually better
● 2D Poisson problem: FORTRAN routine HWSCRT from FISHPACK library

using FFT method in non-homogeneous, uniform grid
● For non-uniform grid interpolation to and from a uniform grid is required
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Comparison with other methods

• Low & Lou @ 4 resolutions

• TD different twist and/or
resolution

• Stable MHD simulation
Leake et al. 2013

• Unstable MHD simulation
Leake et al. 2014
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Comparison with other methods

• All methods (except GR) within 2%
• DeVore gauge more accurate than 

Coulomb gauge
• More twist isn’t more helicity
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Comparison with other methods

• Weak dependence on
resolution in TD, but
more clear in LL

• Spread within 4%
• Differences between 

methods more important
• Lower resolution = 

more B divergence
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Comparison with other methods

• Spread in helicity values 0.2% (st) and 3% (un)
• More helicity isn’t more eruptive
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Comparison with other methods

Bδ=Bs+δ Bns

Split B (of MHD-st at t=50) in solenoidal 
and non-solenoidal parts (Valori et al. 2013), 
then add ns in controlled way

• Spread in helicity values grows from 1% 
to 20%

• Max reasonable helicity for divergence 
errors <~8%
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Computation in spherical case

Finite-volume methods
1. given B find B

p

2. given B, B
p
 find A, A

p

Moraitis et al. 2018



5 December 2018, Athens  

Computation in spherical case

in the finite volume

● BVP well defined only for flux-balanced magnetic fields
● FORTRAN routine MUD3SA from MUDPACK library
● Routine uses multigrid method in non-homogeneous, uniform grid of 

special form m*2n-1+1, m, n integers, and positive φ
● For non-uniform/non-special grid interpolation to and from a 

uniform/special grid is required

solution of Laplace's 
equation

under Neumann BCs

Potential magnetic field
satisfying condition

Step 1 – Potential field calculation
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Computation in spherical case
Step 2 – Vector potentials calculation

invert with Valori et al. (2012) method
DeVore (2000) gauge

Simple gauge

Coulomb gauge

● Same method for both vector potentials
● Integrations: trapezoidal rule, applicable also to non-uniform grid
● Top/bottom reference planes give different results – top is usually better
● 2D Poisson problem: FORTRAN routine HWSSSP from FISHPACK library

using FFT method in non-homogeneous, uniform grid
● For non-uniform grid interpolation to and from a uniform grid is required
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Computation in spherical case

Validation against semi-analytic NLFF fields of
Low & Lou (1990) with:
• different resolution
• different reference plane
• different gauge
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Field line helicity

Yeates & Hornig 2016

Definition: The integral of the vector
potential along a field line

+ : Magnetic helicity then reduces to a
     surface integral along the boundary

- : FLH is gauge-dependent
    not properly defined for relative 
    magnetic helicity
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Relative magnetic field line helicity

flux-tube assumption

start from same footpoint α
p+

=α
+

so that

α
p+

=α
+

α
p-

α
-

α
p+

flux-tube assumption

Moraitis et al. 2018 (under review)
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Relative magnetic field line helicity

All are gauge-dependent and in all cases

α
p+

=α
+

α
p-

α
-

α
p+
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Computing RMFLH
Instantaneous finite-volume computation

1. given B find B
p

2. given B, B
p
 find A, A

p

3. given B, B
p
 and A+A

p
 find RMFLH
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Computing RMFLH

FL integration routine: modification of QSL Squasher code (Tassev & Savcheva 2016) 
which uses adaptive RK in C++, fast and robust
● same method for both field line integrations
● omit QSL part, keep only FL integration part
● addition of one more equation

to the system
solved by the code

● user-supplied starting points instead of automatically determined

Step 3 – Field line integrations
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Validation with MHD data
MHD simulations:

Non-eruptive flux emergence
Leake et al. (2013)

Eruptive flux emergence
Leake et al. (2014)

Coronal jet formation
Pariat et al. (2009, 2010)
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Validation results
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2D visualization of RMFLH

non-eruptive, t=120 @ z=0, FL0
gauge-dependent images

1st term 2nd term total
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3D visualization of RMFLH

Non-eruptive flux emergence
simulation
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3D visualization of RMFLH

Eruptive flux emergence
simulation
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3D visualization of RMFLH

Jet formation simulation
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Conclusions

● Magnetic helicity is very important in studies of magnetized systems thanks to a range of useful properties

● The appropriate expression in astrophysical conditions is relative magnetic helicity

● Relative magnetic helicity is hard to compute, and for this, accurate computational methods appeared only 
recently

● Finite-volume methods provide the most accurate helicity values. Many methods exist in Cartesian 
coordinates that agree to a high degree

● First development of a computational method in spherical geometry

● Mathematical derivation of proper RMFLH without any gauge restrictions, validation against 3 MHD 
simulations

● RMFLH has important potential in highlighting locations of intense helicity

● A lot more can be developed/examined
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